Rethinking the Florida Transportation Concurrency Mandate
Tim Chapin, Greg Thompson, and Jeff Brown

Florida’s Transportation Concurrency Mandate
Florida’s landmark 1985 Growth Management Act included a “concurrency” provision, which mandated that development is not to proceed unless infrastructure capacity and specific urban services are in place to service new development. Transportation facilities were identified as one of the facility types required to be concurrent prior to the issuance of development orders. In practice this has meant that in the absence of capacity on existing or planned roads, new development was not to be permitted by local jurisdictions.

Research into the design and implementation of Florida’s transportation concurrency mandate has revealed that this policy for managing growth has suffered from implementation problems since its inception. These flaws range from big, theoretical issues, like a failure to recognize the fundamental relationship between supply and demand in travel behavior, to smaller issues of implementation, such as a failure to adequately account for and value non-automotive trips in the models. Below we detail a number of major flaws to transportation concurrency as designed and implemented in Florida.

Issue #1: Assuming that Traffic Flows are Fixed
Transportation concurrency requires an understanding of the science of traffic flow and travel behavior, which is based upon the law of supply and demand. Unfortunately, the state’s current approach to transportation concurrency ignores this science. The current approach to concurrency assumes that observed traffic is a fixed amount that can be determined by the trips associated with surrounding land uses. This approach assumes that the amount of traffic generated by surrounding land uses will not increase if the capacity of the road is increased. Under the current approach, the primary way to address congestion is to increase the size of the road. However, this ignores the fact that people adjust their behavior to take advantage of new road capacity as it is provided. Underlying the science of traffic flow and travel behavior is the notion of travel as a derived demand. The primary constraint on travel behavior is the cost of travel, measured in monetary terms or in time spent in transit; the lower the cost of travel, the more likely people are to travel. When a transportation network is expanded, through new roadways or added lanes, the cost of travel is effectively reduced and more travel results.

Issue #2: Congestion May Not be a Problem
Another fundamental flaw in Florida’s transportation concurrency approach rests in the assumption that congestion is a “problem” that needs to be “solved”. While very few people enjoy sitting in traffic, when viewed holistically congestion is in many ways a desirable outcome. To wit:

- Congestion is one indicator of economic health within a region; congestion is typically found in the most economically advantaged places in the state.
- Congestion can be viewed as evidence of success in achieving the land use outcomes intended by the Growth Management Act. Congestion is partly a function of development density; as densities increase, congestion also increases. Given a state goal of compact urban development, increases in traffic congestion should be expected, and, to a limited extent embraced, as evidence that the state’s land planning initiatives have been successful.
- Lastly, congestion can serve to encourage behaviors that are deemed desirable under the state’s larger growth management agenda, such as increased transit ridership, greater mode shares for bicycle and pedestrian trips, and the relocation of households to locations closer to destinations that are important to them.

Issue #3: Localized Analyses, But Regional Impacts
As implemented, concurrency typically focuses upon local conditions and local impacts, with little to no attention paid to the regional effects of land use changes. Typically, congestion on a given road segment is viewed simplistically as a local phenomenon that is caused by development in the immediate proximity of the road segment. In reality, traffic on any segment of a road network is composed of a mix of both local and regional trips. However, concurrency analyses often do not capture the regional component of that traffic although it is often the dominant flow on many roads, especially for the state’s major arterials and highways.

Issue #4: Implementation Complexity
Beyond the fundamental problems raised by Issues #1-3, transportation concurrency is a policy that has proven very difficult to translate into a workable program. To be implemented appropriately, concurrency requires a great deal of data, updated frequently, and a high degree of staff technical capacity to analyze the data, run the models, and interpret the findings. The performance to date by local governments in implementing transportation concurrency lends support to the conclusion that this policy may be too complicated and too data intensive to be implemented successfully by many, if not most, local governments in the state.
Issue #5: Valuing Non-Automotive Trips

Complicating matters further is that transportation concurrency analyses typically do a poor job of accounting for non-automobile trips. These analyses often do not recognize that users have transportation choices; trips can be met through walking, riding a bike, automobile, carpooling, and/or use of a transit system. The transportation models that are used to support concurrency analyses typically focus solely on automobile trips. While the vast majority of trips are made by private autos, in some areas of the state (especially the state’s heavily urbanized centers) non-automobile trips are a significant and important share of all trips. Consequently, non-automobile trips remain under-valued and the state’s long-term goals of promoting a variety of transportation options and of supporting an urban form that promotes bicycle, pedestrian, and transit trips are much less likely to be realized in development outcomes.

Issue #6: Promotion of Sprawl

In practice, transportation concurrency has promoted development in those areas that the state least desires it, in the suburbs and in the exurbs. Transportation concurrency has forced developers to chase road capacity and this capacity is much more likely to be found in non-urban areas. This sprawling development pattern has devastated environmentally sensitive lands, promoted lower densities, and limited the development of truly multi-modal transportation systems. Transportation concurrency has also hampered redevelopment efforts in the state’s larger cities and sometimes even limited revitalization efforts along main streets in smaller towns. In effect, then, transportation concurrency has proven to be one of the staunchest obstacles to achieving many of the other goals of the state’s growth management system.

Issue #7: Coordination Problems at the Land Use-Transportation Planning Nexus

A final major problem relating to transportation concurrency rests in the lack of coordination between the future land use elements and transportation elements of local comprehensive plans. Many jurisdictions have established a future land use pattern that can accommodate the projected population of the jurisdiction many times over. As a result these land use elements allow for a scattershot, sprawl-oriented development pattern, a pattern that taxes even the most efficient of transportation networks. In contrast, the transportation element is typically sized to more accurately reflect the projected growth of a community. This mismatch between the land use element and the transportation element presents difficulties for planners and other local officials as they undertake the capital budgeting process and review development proposals for their transportation impacts. Because of this situation, transportation investments often get spread across a wider landscape, driving up the size, extent, and costs of these systems, which represents an inefficient and ineffective use of limited public infrastructure funds.

Conclusion

The original objective of the state’s transportation concurrency mandate was to create a situation where traffic congestion would not result from new development. However, the evidence indicates that achievement of this objective is possible only by allowing low density development in the midst of large arterial roadways and substantial freeway networks. In addition, this policy framework yields development outcomes that run against other public policy objectives, such as promoting more compact development and the development of a range of viable transportation options.

In our work we have documented the fundamental flaws in the state’s transportation concurrency mandate, flaws that rest in both the design and implementation of the mandate. Taken as a whole, the land use and transportation literatures, our experiences in working with local governments, and the on-the-ground evidence all indicate that the Florida’s transportation concurrency mandate is in dire need of reconsideration by the government. Instead of continued and largely ineffective minor changes to the state’s transportation concurrency policy, we instead recommend that the state, through the Department of Community Affairs, strongly reconsider the utility and viability of transportation concurrency as a means for managing growth in the state. If the state remains interested in experiencing continued, but sustainable economic growth, then the evidence indicates that transportation concurrency is an unworkable and untenable means to this end.

Tim Chapin, Greg Thompson, and Jeff Brown are on the faculty of the Department of Urban and Regional Planning at Florida State University. This Policy Brief is based upon research funded by the Florida Department of Community Affairs.

The DeVoe L. Moore Center at Florida State University is dedicated to increasing knowledge about how government rules, regulations, and programs affect the economy and individuals. The study of state and local regulations is a major focus of Center’s program. For more information visit our home page at www.fsu.edu/~policy. If you would like to be put on our mailing list, contact the Center by phone or e-mail us at sihilanfe@mailer.fsu.edu.

DEVOE L. MOORE CENTER
150 BELLAMY BUILDING
THE FLORIDA STATE UNIVERSITY
Tallahassee, FL 32306-2220
Telephone: (850) 644-3848 • Fax: (850) 644-0581
www.fsu.edu/~policy